Permeability Tuned Oscillator (PTO) Working Nicely
⚠️ WARNING: This page is obsolete
Articles typically receive this designation when the technology they describe is no longer relevant, code provided is later deemed to be of poor quality, or the topics discussed are better presented in future articles. Articles like this are retained for the sake of preservation, but their content should be critically assessed.
My last entry described my accidental discovery of the PTO for QRP purposes. I breadboarded it and was amazed at the results! I went ahead and built this carefully in an enclosure and the output is wonderful. It’s strong, it’s stable, and it tunes effortlessly over the same range it did before (about 1MHz). The video describes details of the action, and demonstrates the stability of the oscillator by letting you hear it audibly on a nearby receiver.
The fundamental concept and hardware is straightforward. Two nuts are soldered into an Altoids tin providing much-needed grounding for the screw (reduces shift when it’s touched). Also the wire soldered over the screw is pinched firmly at the base to apply constant pressure to the screw to make it hard to turn and therefore more stable while turning. The inductor is a bunch of turns (no idea how many, about a meter of magnet wire) around a McDonalds straw.
Alltogether it’s a simple colpitts oscillator with a MPF102 JFET at its heart, using a 74hc240 CMOS buffer as an amplifier. There’s a voltage regulator in there too.
The result? Pretty darn stable (by CW QSO standards). That’s without any regard to thermal isolation or temperature compensation. I’m quite pleased! I look forward to MUCH more experimentation now that I’m starting to feel good about designing and building simple, tunable, stable oscillators. It’s always hard to nail all 3 in a single device!