The personal website of Scott W Harden

Python-Powered Frequency Activity Logger

__I’m often drawn toward projects involving data analysis with Python. __When I found out a fellow ham in Orlando was using his computer to stream a popular local repeater frequency over the internet I got excited because of the potential for generating data from the setup. Since this guy already has his radio connected to his PC’s microphone jack, I figured I could write a Python app to check the microphone input to determine if anyone is using the frequency. By recording when people start and stop talking, I can create a log of frequency activity. Later I can write software to visualize this data. I’ll talk about that in a later post. For now, here’s how I used Python and a Linux box (Ubuntu, with the python-alsaaudio package installed) to generate such logs.

We can visualize this data using some more simple Python code. Long term it would be useful to visualize frequency activity similarly to how I graphed computer usage at work over the last year but for now since I don’t have any large amount of data to work with. I’ll just write cote to visualize a QSO (conversation) with respect to time. It should be self-explanatory. This data came from data points displayed in the video (provided at the end of this post too).

And, of course, the code I used to generate the log files (seen running in video above): Briefly, this program checks the microphone many times every second to determine if its state has changed (talking/no talking) and records this data in a text file (which it updates every 10 seconds). Matplotlib can EASILY be used to graph data from such a text file.

import alsaaudio, time, audioop, datetime
inp = alsaaudio.PCM(alsaaudio.PCM_CAPTURE,alsaaudio.PCM_NONBLOCK)

squelch = False
lastLog = 0
dataToLog = ""

def logIt(nowSquelch):
 global dataToLog, lastLog
 timeNow = datetime.datetime.now()
 epoch = time.mktime(timeNow.timetuple())
 if nowSquelch==True: nowSquelch=1
 else: nowSquelch=0
 logLine="%s %dn"%(timeNow, nowSquelch)
 print timeNow, nowSquelch
 if epoch-lastLog>10:
 #print "LOGGING..."
 lastLog = epoch

while True:
 l,data = inp.read()
 if l:
 vol = audioop.max(data,2)
 if vol>800: nowSquelch = True
 else: nowSquelch = False
 if not nowSquelch == squelch:
 squelch = nowSquelch

To use this code make sure that you’ve properly calibrated it. See the “vol>800” line? That means that if the volume in the microphone is at least 800, it’s counted as talking, and less than it’s silence. Hopefully you can find a value that counts as silence when the squelch is active, but as talking when the squelch is broken (even if there’s silence). This is probably best achieved with the radio outputting at maximum volume. You’ll have to run the program live with that line un-commented to view the data values live. Find which values occur for squelch on/off, and pick your threshold accordingly.

After that you can visualize the data with the following code. Note that this is SEVERELY LIMITED and is only useful when graphing a few minutes of data. I don’t have hours/days of data to work with right now, so I won’t bother writing code to graph it. This code produced the graph seen earlier in this page. Make sure matplotlib is installed on your box.

import pylab

def loadData():
 #returns Xs
 import time, datetime, pylab
 for line in raw:
 if len(line)<10: continue
 line = line.strip('n').split(" ")
 t=line[0]+" "+line[1]
 thisDay=time.strptime(t[0], "%Y-%m-%d %H:%M:%S")
 if timeStart==None: timeStart=e
 if line[-1]==1: stat=True
 else: stat=False
 if not lastOn and line[-1]=="1":
 return onTimes

times = loadData()
for t in times:
pylab.title("A little QSO")
pylab.xlabel("Time (minutes)")

McPPNG Nearing completion

Summary: The author has a fully functional prototype of their Microcontroller Powered Prime Number Generator and plans to add more features and work on the code before being done tomorrow.
This summary was generated in 56.21 seconds from an original post containing 234 words.

Code Monkey Want Cookie

Summary: The author of the blog post observed that the rate at which primes are discovered appears to be linear over time, rather than following an inverse exponential curve as might be expected.
This summary was generated in 52.78 seconds from an original post containing 508 words.

I Wish I Weren't Forced to Recycle

Summary: The author of the blog post describes how they built an electronic project that involves programming a microcontroller to blink LEDs and output sound in response to button presses, and also includes a power supply circuit that they are harvesting for use in the project.
This summary was generated in 53.91 seconds from an original post containing 221 words.

Prime Prototype Construction

Now that I’ve worked-out the software side of the microcontroller-powered prime number generator, it’s time to start working on the hardware. I want to make a prototype which is far smaller and simpler than the final version but lets me practice driving lots of LEDs (30). I expect the final version to have around 80. Also, the heart of this project is an ATTiny2313 microcontroller, and for the full version I’d like to use an ATMEega8. I picked up an unfinished wooden box with a magnetic latch from Michaels. It’s delicate and tends to chip when you drill it, but moving slowly I’m able to make nice evenly-spaced holes.

__This is the circuit concept. __The chip is an ATTiny2313, sourced with 5V, where the left pins control the columns (by providing current) and the right pins control the rows (by providing ground). The “holes” at the top of the circuit represent where I hook up my PC and external power for testing purposes.

Thoughts from Future Scott (10 years later, August, 2019)

A+ for enthusiasm and construction but your design is... just no!

Why are you using an external crystal?

The schematic for the crystal is wrong: those capacitors should be to ground not in series!

You made the circuit diagram in InkScape!

You shouldn't drive current directly out of the microcontroller pins.

The majority of the microcontroller CPU cycles will go into managing multiplexing of the display (not calculating primes).

After a little more work I have a functional device and it looks better than I expected. There are a few more features I want to add, and I want to work on the code some more, but I hope to be done tomorrow. The coolest part is that I’ve included an internal button which drives a pause/resume and speed-controller menu based upon the length of button presses! There’s a lot of awesome stuff I want to write, but once again, I’ll save it for the completed project page.

I rendered the cover sticker wrong and all the LEDs are mislabled. The first LED should be 2^0 (1), and the second should be 2^1 (2), etc. Also, 2^22 and 2^23 are mislabeled - oops! But the thing really does generate, differentiate, and display [only[ prime numbers. Once again, videos (including demonstration of the menus and the programming options) and source code will be posted soon.