The personal website of Scott W Harden
June 3rd, 2010

Soup Can MEPT

This page documents the progress of my MEPT (manned experimental propagation transmitter) endeavors. If you have questions, feel free to E-mail me! My contact information can be found by clicking the link on the right navigation menu.

The Soup-Can Transmitter

The Signal

The Spots

Florida

288.3 miles away (W4HBK) May 22, 2010

Massachusetts

1,075.5 miles away (W1BW) May 27, 2010

Belgium

4,496.3 miles away (ON5EX) May 27, 2010

Germany

4,869.2 miles away (DL4MGM) May 28, 2010

Essex

4,356.4 miles away (G6AVK) May 28, 2010

New Zealand

8,077.6 miles away (ZL2IK) May 29, 2010

Markdown source code last modified on January 18th, 2021
---
title: Soup Can MEPT
date: 2010-06-03 13:51:34
tags: qrss, amateur radio, circuit, old
---

# Soup Can MEPT

__This page documents the progress__ of my MEPT (manned experimental propagation transmitter) endeavors. If you have questions, feel free to E-mail me! My contact information can be found by clicking the link on the right navigation menu.

## The Soup-Can Transmitter

<div class="text-center img-border">

[![](IMG_3459_thumb.jpg)](IMG_3459.jpg)
[![](IMG_3466_thumb.jpg)](IMG_3466.jpg)
[![](IMG_3467_thumb.jpg)](IMG_3467.jpg)

</div>

## The Signal

<div class="text-center img-border">

[![](aj4vd_gator_thumb.jpg)](aj4vd_gator.png)
[![](antenna_thumb.jpg)](antenna.jpg)

</div>

## The Spots

### Florida
288.3 miles away (W4HBK) May 22, 2010

<div class="text-center img-border">

[![](spotNice_thumb.jpg)](spotNice.jpg)

</div>

### Massachusetts
1,075.5 miles away (W1BW) May 27, 2010

<div class="text-center img-border">

[![](gatorSeen_thumb.jpg)](gatorSeen.jpg)

</div>

### Belgium
4,496.3 miles away (ON5EX) May 27, 2010

<div class="text-center img-border">

[![](aj4vd_gator_belgium_thumb.jpg)](aj4vd_gator_belgium.jpg)

</div>

### Germany
4,869.2 miles away (DL4MGM) May 28, 2010

<div class="text-center img-border">

[![](2010_05_28_DL4MGM_Germany_thumb.jpg)](2010_05_28_DL4MGM_Germany.png)

</div>

### Essex
4,356.4 miles away (G6AVK) May 28, 2010

<div class="text-center img-border">

[![](aj4vd_gator_essex_thumb.jpg)](aj4vd_gator_essex.jpg)

</div>

### New Zealand
8,077.6 miles away (ZL2IK) May 29, 2010

<div class="text-center img-border">

[![](2010_05_29_ZL2IK_NewZealand_thumb.jpg)](2010_05_29_ZL2IK_NewZealand.png)

[![](NewZealand_thumb.jpg)](NewZealand.png)

</div>

May 28th, 2010

Measure QRP Radio Output Power with an Oscilloscope

I added a backlight to my oscilloscope! My o-scope's backlight hasn't worked since I got it (for $10), so I soldered-up a row of 9 orange LEDs (I had them in a big bag) and hooked them directly up to a 3v wall wart. In retrospect I wish I had a bunch of blue LEDs... but for now I can't get over how well this worked! Compare it to the images a few posts back - you can really see the grid lines now!

I know this is super-basic stuff for a lot of you all, but I haven't found a place online which CLEARLY documents this process, so I figured I'd toss-up a no-nonsense post which documents how I calculate the power output (in watts) of my QRP devices (i.e., QRSS MEPT) using an oscilloscope.

I think I have increased power output because I'm now powering my 74HC240 from this power supply (5v, 200A) rather than USB power (which still powers the microcontroller). Let's see!

There's the signal, and I haven't calibrated the grid squares (this thing shifts wildly) so I have to measure PPV (peak-to-peak voltage) in "squares". The PPV of this is about 5.3 squares.

I now use a function generator to create square waves at a convenient height. Using the same oscilloscope settings, I noticed that 10v square waves are about 7 squares high. My function generator isn't extremely accurate as you can see (very fuzzy) but this is a good approximation. I now know that my signal is 5.3/7*10 volts. The rest of the math is pictured here:

140mW - cool! It's not huge... but it's pretty good for what it is (a 2-chip transmitter). I'd like to take it up to a full watt... we'll see how it goes. My 74HC240 is totally mutilated. I accidentally broke off one of the legs, couldn't solder to it anymore, and thought I destroyed the chip. After getting distraught about a $0.51 component, I ripped ALL the legs off. Later I realized I was running out of these chips, and decided to try to revive it. I used a Dremel with an extremely small bit (similar to a quarter-round burr in dentistry) and drilled into the black casing of the microchip just above the metal contacts, allowing me enough surface area for solder to adhere to. I'm amazed it works! Now, to get more milliwatts and perhaps even watts...

Markdown source code last modified on January 18th, 2021
---
title: Measuring QRP Radio Output Power with an Oscilloscope
date: 2010-05-28 19:54:39
tags: amateur radio, circuit, old
---

# Measure QRP Radio Output Power with an Oscilloscope

__I added a backlight to my oscilloscope!__ My o-scope's backlight hasn't worked since I got it (for $10), so I soldered-up a row of 9 orange LEDs (I had them in a big bag) and hooked them directly up to a 3v wall wart. In retrospect I wish I had a bunch of blue LEDs... but for now I can't get over how well this worked! Compare it to the images a few posts back - you can really see the grid lines now!

<div class="text-center img-border">

[![](oscilliscope_leds_thumb.jpg)](oscilliscope_leds.jpg)
[![](qrss_qrp_circuit_scope_thumb.jpg)](qrss_qrp_circuit_scope.jpg)

</div>

__I know this is super-basic stuff__ for a lot of you all, but I haven't found a place online which CLEARLY documents this process, so I figured I'd toss-up a no-nonsense post which documents how I calculate the power output (in watts) of my QRP devices (i.e., QRSS MEPT) using an oscilloscope.

__I think I have increased power output__ because I'm now powering my 74HC240 from this power supply (5v, 200A) rather than USB power (which still powers the microcontroller). Let's see!

__There's the signal, and I haven't calibrated__ the grid squares (this thing shifts wildly) so I have to measure PPV (peak-to-peak voltage) in "squares". The PPV of this is about 5.3 squares.

<div class="text-center img-border">

[![](qrss_qrp_signal_thumb.jpg)](qrss_qrp_signal.jpg)
[![](10vSquare_thumb.jpg)](10vSquare.jpg)

</div>

__I now use a function generator__ to create square waves at a convenient height. Using the same oscilloscope settings, I noticed that 10v square waves are about 7 squares high. My function generator isn't extremely accurate as you can see (very fuzzy) but this is a good approximation. I now know that my signal is 5.3/7\*10 volts. The rest of the math is pictured here:

<div class="text-center img-border">

[![](powerCalcs_thumb.jpg)](powerCalcs.jpg)

</div>

__140mW - cool!__ It's not huge... but it's pretty good for what it is (a 2-chip transmitter). I'd like to take it up to a full watt... we'll see how it goes. My 74HC240 is totally mutilated. I accidentally broke off one of the legs, couldn't solder to it anymore, and thought I destroyed the chip. After getting distraught about a $0.51 component, I ripped ALL the legs off. Later I realized I was running out of these chips, and decided to try to revive it. I used a Dremel with an extremely small bit (similar to a quarter-round burr in dentistry) and drilled into the black casing of the microchip just above the metal contacts, allowing me enough surface area for solder to adhere to. I'm amazed it works! Now, to get more milliwatts and perhaps even watts...

<div class="text-center img-border">

[![](testcircuit_thumb.jpg)](testcircuit.jpg)

</div>

May 26th, 2010

Pushing and Pulling

I found a way to quadruple the output power of my QRSS transmitter without changing its input parameters. Thanks to a bunch of people (most of whom are on the Knights QRSS mailing list) I decided to go with a push-pull configuration using 2 pairs of 4 gates (8 total) of a 74HC240. I'll post circuit diagrams when I perfect it, but for now check out these waveforms!

First of all, this is the waveform before and after amplification with the 74HC240. I artificially weakened the input signal (top) with a resistor and fed it to the 74HC240. For the rest of the images, the input is 5v p-p and the output is similar, so amplification won't be observed. The wave I'm starting with is the output of a microcontroller which is non-sinusoidal, but this can be fixed later with lowpass filtering.

Here you can see the test circuit I'm using. It should be self-explanatory.

Here's the output of the microcontroller compared to the in-phase output of the 74HC240

Here are the two outputs of the 74HC240. 4 of the gates are used to create output in-phase with the input, and the other four are used to create out-of-phase wave. Here are the two side by side. The top is 0 to 5v, the bottom is 0 to -5v, so we have a push-pull thing going on... woo hoo!

The waves, when overlapped, look similar (which I guess is a good thing) with a slight (and I mean VERY slight) offset of the out-of-phase signal. I wonder if this is caused by the delay in the time it takes to trigger the 74HC240 to make the out-of-phase signal? The signal I'm working with is 1MHz.

Okay, that's it for now. I'm just documenting my progress. 73

Markdown source code last modified on January 18th, 2021
---
title: Pushing and Pulling
date: 2010-05-26 07:42:39
tags: circuit, amateur radio, old
---

# Pushing and Pulling

__I found a way__ to quadruple the output power of my QRSS transmitter without changing its input parameters. Thanks to a bunch of people (most of whom are on the Knights QRSS mailing list) I decided to go with a push-pull configuration using 2 pairs of 4 gates (8 total) of a 74HC240. I'll post circuit diagrams when I perfect it, but for now check out these waveforms!

<div class="text-center img-border">

[![](qrss_amplified1_thumb.jpg)](qrss_amplified1.jpg)

</div>

First of all, this is the waveform before and after amplification with the 74HC240. I artificially weakened the input signal (top) with a resistor and fed it to the 74HC240. For the rest of the images, the input is 5v p-p and the output is similar, so amplification won't be observed. The wave I'm starting with is the output of a microcontroller which is non-sinusoidal, but this can be fixed later with lowpass filtering.

<div class="text-center img-border">

[![](qrss_74hc2401_thumb.jpg)](qrss_74hc2401.jpg)

</div>

Here you can see the test circuit I'm using. It should be self-explanatory.

<div class="text-center img-border">

[![](qrss_inPhase1_thumb.jpg)](qrss_inPhase1.jpg)

</div>

Here's the output of the microcontroller compared to the in-phase output of the 74HC240

<div class="text-center img-border">

[![](qrss_out_of_phase1_thumb.jpg)](qrss_out_of_phase1.jpg)

</div>

Here are the two outputs of the 74HC240. 4 of the gates are used to create output in-phase with the input, and the other four are used to create out-of-phase wave. Here are the two side by side. The top is 0 to 5v, the bottom is 0 to -5v, so we have a push-pull thing going on... woo hoo!

<div class="text-center img-border">

[![](qrss_out_of_phase_overlap1_thumb.jpg)](qrss_out_of_phase_overlap1.jpg)

</div>

The waves, when overlapped, look similar (which I guess is a good thing) with a slight (and I mean VERY slight) offset of the out-of-phase signal. I wonder if this is caused by the delay in the time it takes to trigger the 74HC240 to make the out-of-phase signal? The signal I'm working with is 1MHz.

__Okay, that's it for now.__ I'm just documenting my progress. 73
May 17th, 2010

Minimal QRSS Transmitter

Success! Amid a bunch of academic exams, psycho-motor tests, and other crazy shenanigans my dental school is putting me through, I managed to do something truly productive! I built a simple QRSS transmitter with an ATTiny44A microcontroller clocked by a 7.04 MHz crystal which generates FSK signals and modulates its own frequency by applying potential to a reverse-biased diode at the base of the crystal, the output (CKOUT) of which is amplified by an octal buffer and sent out through an antenna. As it is, no lowpass filtering is implemented, so noisy harmonics are expected. However for ~2$ of parts this is an effective QRSS transmitter!

I was able to detect these signals VERY strongly at a station ~10 miles from my house. I haven't yet dropped in a 10.140 MHz crystal and tried to get this thing to transmit in the QRSS band, but when I do I hope to get reports from all over the world! This is what it looks like:

The cool thing about this transmitter (aside from the fact that it's so cheap to build) is that it will work with almost any crystal (I think below 20 MHz-ish) - just drop it in the slot and go!

Markdown source code last modified on January 18th, 2021
---
title: Minimal QRSS Transmitter
date: 2010-05-17 11:13:52
tags: circuit, qrss, old
---

# Minimal QRSS Transmitter

__Success!__ Amid a bunch of academic exams, psycho-motor tests, and other crazy shenanigans my dental school is putting me through, I managed to do something truly productive! I built a simple QRSS transmitter with an ATTiny44A microcontroller clocked by a 7.04 MHz crystal which generates FSK signals and modulates its own frequency by applying potential to a reverse-biased diode at the base of the crystal, the output (CKOUT) of which is amplified by an octal buffer and sent out through an antenna. As it is, no lowpass filtering is implemented, so noisy harmonics are expected. However for ~2$ of parts this is an effective QRSS transmitter!

<div class="text-center img-border">

[![](simple_qrss_transmitter_thumb.jpg)](simple_qrss_transmitter.jpg)

</div>

__I was able to detect__ these signals VERY strongly at a station ~10 miles from my house. I haven't yet dropped in a 10.140 MHz crystal and tried to get this thing to transmit in the QRSS band, but when I do I hope to get reports from all over the world! This is what it looks like:

<div class="text-center img-border">

[![](aj4vd_thumb.jpg)](aj4vd.jpg)

</div>

__The cool thing__ about this transmitter (aside from the fact that it's so cheap to build) is that it will work with almost any crystal (I think below 20 MHz-ish) - just drop it in the slot and go!

April 3rd, 2010

Microcontroller Clocking a Transmitter?

I shouldn't claim this idea as novel. After googling around, I found another person who's doing the same thing, and now that I read his page I remember reading his page before, which is likely where I got the idea in the first place. I want to give him credit and hope that my project can turn out successfully like his! http://clayton.isnotcrazy.com/mept_v1.

Here's my idea: The core of any transmitter is an oscillator, and in simple transmitters (like QRSS devices), it's often a crystal. Frequency adjustment is accomplished by adjusting capacitance to ground on one of the crystal legs. Simple oscillators such as the Colpitts design (based on an NPN transistor) are often used (pictured).

See how pins 4 and 5 allow for a crystal, and pin 6 has a "CKOUT" feature?" I'm still not sure exactly what the waveform of its output looks like. The datasheet is almost intentionally cryptic. About the only thing I've been able to discover from the Internet is that it's sufficient to clock another microcontroller. However, if it's an amplified sine wave output, how cool is it that it might be able to produce RF at the same frequency at which it's clocked?

However in my quest to design a minimal-case long-distance transmitter, I'm trying to think outside the box. Although it's relatively simple, that's still several parts just to make an oscillating sine wave from a crystal. The result still has to be pre-amplified before sending the signal to an antenna. I'm starting to wonder about the oscillator circuitry inside a microcontroller which has the ability to be clocked by an external crystal. For example, take the pinout diagram from an Atmel ATTiny2313 AVR:

Taking it a step further, I wonder if I could write code for the microcontroller to allow it to adjust its own clock speed / frequency output by adjusting capacitance on one of the legs of the crystal. A reverse-biased LED with variable voltage pressed against it from an output pin of the microcontroller might accomplish this. How cool would this be - a single chip transmitter and frequency-shifting keyer all in one? Just drop in a crystal of your choice and BAM, ready to go. Believe it or not I've tested this mildly and it's producing enough RF to be able to be picked up easily by a receiver in the same room, but I'm still unsure of the power output or the waveform. If the waveform is an amplified sine wave I'm going to pass out. More likely it's a weak sine wave needing a preamplifier still, or perhaps even amplified square waves in need of lowpass filtering...

My wife snapped a photo of me working! It's a funny pic - I'm in my own little world sometimes…

Markdown source code last modified on January 18th, 2021
---
title: Microcontroller Clocking a Transmitter?
date: 2010-04-03 23:19:37
tags: qrss, circuit
---

# Microcontroller Clocking a Transmitter?

__I shouldn't claim this idea as novel. __After googling around, I found another person who's doing the same thing, and now that I read his page I remember reading his page before, which is likely where I got the idea in the first place. I want to give him credit and hope that my project can turn out successfully like his! [http://clayton.isnotcrazy.com/mept\_v1](http://clayton.isnotcrazy.com/mept_v1).

__Here's my idea: __ The core of any transmitter is an oscillator, and in simple transmitters (like QRSS devices), it's often a crystal. Frequency adjustment is accomplished by adjusting capacitance to ground on one of the crystal legs. Simple oscillators such as the Colpitts design (based on an NPN transistor) are often used (pictured).

<div class="text-center">

[![](NPN_Colpitts_oscillator_collector_coil_thumb.jpg)](NPN_Colpitts_oscillator_collector_coil.png)

</div>

__See how pins 4 and 5 allow for a crystal, and pin 6 has a "CKOUT" feature?"__ I'm still not sure exactly what the waveform of its output looks like. The datasheet is almost intentionally cryptic. About the only thing I've been able to discover from the Internet is that it's sufficient to clock another microcontroller. However, if it's an amplified sine wave output, how cool is it that it might be able to produce RF at the same frequency at which it's clocked?

__However in my quest to design a minimal-case long-distance transmitter,__ I'm trying to think outside the box. Although it's relatively simple, that's still several parts just to make an oscillating sine wave from a crystal. The result still has to be pre-amplified before sending the signal to an antenna. I'm starting to wonder about the oscillator circuitry inside a microcontroller which has the ability to be clocked by an external crystal. For example, take the pinout diagram from an Atmel ATTiny2313 AVR:

<div class="text-center">

![](attiny-2313.gif)

</div>

__Taking it a step further,__ I wonder if I could write code for the microcontroller to allow it to adjust its own clock speed / frequency output by adjusting capacitance on one of the legs of the crystal. A reverse-biased LED with variable voltage pressed against it from an output pin of the microcontroller might accomplish this. How cool would this be - a single chip transmitter and frequency-shifting keyer all in one? Just drop in a crystal of your choice and BAM, ready to go. Believe it or not I've tested this mildly and it's producing enough RF to be able to be picked up easily by a receiver in the same room, but I'm still unsure of the power output or the waveform. If the waveform is an amplified sine wave I'm going to pass out. More likely it's a weak sine wave needing a preamplifier still, or perhaps even amplified square waves in need of lowpass filtering...

<div class="text-center img-border">

[![](IMG_3206_thumb.jpg)](IMG_3206.png)

</div>

My wife snapped a photo of me working! It's a funny pic - I'm in my own little world sometimes…

<div class="text-center img-border">

[![](IMG_3241_thumb.jpg)](IMG_3241.jpg)

[![](IMG_3245_thumb.jpg)](IMG_3245.jpg)

[![](IMG_3250_thumb.jpg)](IMG_3250.jpg)

[![](IMG_3257_thumb.jpg)](IMG_3257.jpg)

</div>
Pages