The personal website of Scott W Harden

Is Google Re-Indexing My Life?

After several years of persistent writing on this website I was forced (by my undergraduate university's difficult course loads) to stop adding to this blog - something I consider to be one of the most significant projects I've ever worked on, with brain-to-text recordings of my thoughts spanning almost a decade of time. After a few years of suspended writing, Google went from loving me (sending me thousands of page views daily) to forgetting about me (nothing. silence. nada.). Now that my thesis requirements have been completed, I'm trying to re-energize my writing in an attempt to document the projects I work on which, without this website, would likely be forever forgotten even by me. It appears that the burst of new writing has regained Google's attention. Google for terms such as "data smoothing in python" and it favors my site. Google is slowly, but surely, re-indexing my pages and assigning them values of relevance which are approaching (but still a tiny fraction of) what they were before my hiatus. Here's a chart from google's analytics demonstrating an estimation of IP visits per day (visitors) and their locations.

⚠️ Warning: This article is obsolete.
Articles typically receive this designation when the technology they describe is no longer relevant, code provided is later deemed to be of poor quality, or the topics discussed are better presented in future articles. Articles like this are retained for the sake of preservation, but their content should be critically assessed.

Post-Defense Day 1

Two hours after getting home from work I'm already basking in the newfound carefreeness thanks to the successful completion of my thesis defense (and graduation requirements). Yesterday I went to SkyCraft, early this morning I posted a schematic diagram of a basic circuit concept for a radio/microphone interface box with tone generating functions, and this afternoon I finished its assembly. It's hacked together, I know, but it's just a prototype. What does it do? It's complicated. It's basically just an exercise in microchip programming.

Future Scott reacts to this in August, 2019 (10 years later)

LOL! That's a pipette box! A chip socket was sunk into a plastic enclosure somehow! And that "regulated power supply" is an LM7805 on non-metallic perfboard screwed to two Jenga blocks!

Here's the little setup with the main control unit and a DC to DC regulated power supply / serial microchip programmer I made.

Here's the main control box. Notice the "2-way lighted switches" which I described in the previous entry. I found that proper grounding (floating pin prevention) was critical to their proper function. I'm still new to these chips, so I'm learning, but I'm making progress!

Getting a little artsy with my photographs now... this is the core of the device. It's a picaxe 14m!

This is a 5v regulated power supply I built. The headphone adapter is for easy connection to the serial port. It has a power switch and a program/run switch (allowing use of pin 13, serial out) while still "connected" to the PC.

I've slightly improved the connection between my radio's coax cable to the J-pole antenna I made.

I'm able to get pretty good signals from this antenna, but it's probably not likely to do much to my assembly skills (and lack of tuning), and more likely due to the fact that I have an unobstructed view of middle/southern Orlando from the 3rd story of my apartment balcony. I could probably wire up a rubber duck on a stick and get good results with that location! I'll miss my reception when I move.

Transmitting Around the World

One of my recent fascinations is QRSS, a super-low power mode of transmission over the airwaves. Picture this: get a ham radio setup which outputs dozens of watts of power, use a microcontroller to transmit data (frequency-shifting Morse code), use FFT on the receive end to view it on the computer, now increase the time between the "beeps" to tens of seconds and decrease the power to milliwatts and receive the signal thousands of miles away - that's QRSS! How cool! I want to try this badly... but I have to get back to lab - I have a thesis to write!

Cheaply Create Double-Sided QSL Cards in 1 Day

I'm posting this information hoping that someone else in a position similar to mine can benefit from the experience I gained through trial and error while trying to rapidly design and develop professional-looking QSL cards at low risk. I Googled around for this information, but didn't find anything too helpful, so I figured I'd come up with something on my own and share my story.

QSL cards are like postcards which amateur radio operators often mail to one another after making long distance contacts.__ In addition to providing tangible proof of the communication, they're cool mementos to tote around to remember who you've made contact with over the years. QSL cards display information bout the contact (time, date, call sign, frequency, signal report, etc.) and sometimes contain extra pictures/graphics which make them unique and appealing.

Once I got a HF rig for my apartment (a Century 21 CW-only HF rig which puts out ~30 watts), I started making contacts and getting QSL cards myself, so I wanted to send some nice ones in return. Being a poor college student (and a graduate student at that), I was extremely cash-limited, and didn't want to sit around for weeks while my cards were professionally printed. This post describes how I created nice looking QSL cards in a few hours, for less than $0.25 each!

Step 1: Design the cards with the correct dimensions. The most cost-effective way to print nice digital images is my local Target (a store with a 1-hr photo lab which accepts JPEGs as the image source for $0.20 cents a picture), but the snag was that they only print 4'' x 6''. QSL cards need to be 3.5'' by 5.25''. I used Inkscape to create an image exactly 4'' by 6'', and inside of it I drew a border 3.5'' by 5.25''. Everything outside that border I made black. I designed my QSL card _inside _that border, such that when the images would be printed I could trim-off the black border and have a perfect 3.5'' by 5.25'' QSL card.

Step 2: Print the reverse side on full-size label paper. All I needed was some framed boxes for QSL information, so I quickly sketched up the design in Inkscape and saved it in the same format as before (4'' by 6''). I left a LOT of white space around the edges so it's very forgiving down the line. I then printed the design on full-page label paper (full-sheet stickers, available at most office stores cheaply in the printer paper section), placing 4 "backs" per page.

Here's what the adhesive paper looked like after printing:

Step 3: Attach backings to QSL cards. This part is easy if you have a paper cutter. I purchased mine ~5yrs ago and I *LOVE* it. It's almost as useful as my soldering iron. Seriously, so convenient. I wouldn't dream of doing this with scissors! Anyhow, roughly cut the sticker paper into quarters.

Next, peel and stick on the backs of cards. Don't worry about overhang, we'll take care of that later...

Step 4: Trim the edges. Make sure you do this step _after _applying the sticker. This was the secret that I wish I realized a while ago. If you trim first, sticker placement is critical and difficult. If you place the sticker _before _you trim, you get perfect edges every time.

How nice does that look? If you did your math correctly, your new dimensions should be exactly 3.5'' by 5.25''.

Step 5: fill-out information. I decided to use a metallic Sharpie to write the name of the call sign I send this to on the front of my card. How cool does that look? This is what the front/back of this card looks like after filling it out.

I hope this information helps you. If you print your own QSL cards using this (or a similar) method, let me know about it! I have to say, for ~5 / $1, these don't look to bad. It's especially useful if you only want to print a few cards! Good luck.

-- Scott, AJ4VD

InkScape to the Rescue!

After a few weeks of using InkScape, slowly working through documentation, tutorials, and practicing drawing random objects, I think I'm finally getting the feel of designing images in InkScape, and am growing to appreciate the depth of its usefulness. I'd love to have some great diagrams to include in potential publications. For example, I want a diagram to show how the autonomic nervous system innervates the mouse heart, but no such diagram exists! Here's one for humans but it's major overkill, shows every organ (I only want the heart), and doesn't go into detail as to what the nerves do when they reach the heart (something I'm researching). Also, mouse brains are very different in shape from human brains, and there aren't any good pictures of the ventral side of a mouse brain. So, I found the best one I could and re-created it with InkScape.

I used an existing image as a reference, made half a brain, and can mirror it when I'm done. It looks pretty good, right?

page 1, page 2, page 3, page 4, page 5, page 6, page 7, page 8, page 9, page 10, page 11, page 12, page 13, page 14, page 15, page 16, page 17, page 18, page 19, page 20, page 21, page 22, page 23, page 24, page 25, page 26, page 27, page 28, page 29, page 30, page 31, page 32, page 33, page 34, page 35, page 36, page 37, page 38, page 39, page 40, page 41, page 42, page 43, page 44, page 45, page 46, page 47, page 48, page 49
All Blog Posts