Calculate QRSS Transmission Time with Python

How long does a particular bit of Morse code take to transmit at a certain speed? This is a simple question, but when sitting down trying to design schemes for 10-minute-window QRSS, it doesn’t always have a quick and simple answer. Yeah, you could sit down and draw the pattern on paper and add-up the dots and dashes, but why do on paper what you can do in code? The following speaks for itself. I made the top line say my call sign in Morse code (AJ4VD), and the program does the rest. I now see that it takes 570 seconds to transmit AJ4VD at QRSS 10 speed (ten second dots), giving me 30 seconds of free time to kill.

Here’s the Python code I whipped-up to generate the results:

```xmit=" .- .--- ....- ...- -..  " #callsign
dot,dash,space,seq="_-","_---","_",""
for c in xmit:
if c==" ": seq+=space
elif c==".": seq+=dot
elif c=="-": seq+=dash
for sec in [1,3,5,10,20,30,60]:
tot=len(seq)*sec
print "QRSS %02d: %d sec (%.01f min)"%(sec,tot,tot/60.0)```

How ready am I to implement this in the microchip? Pretty darn close. I’ve got a surprisingly stable software-based time keeping solution running continuously executing a “tick()” function thanks to hardware interrupts. It was made easy thanks to Frank Zhao’s AVR Timer Calculator. I could get it more exact by using a /1 prescaler instead of a /64, but this well within the range of acceptability so I’m calling it quits!

Adding USB to a Cheap Frequency Counter (Again)

Today I rigineered my frequency counter to output frequency to a computer via a USB interface. You might remember that I did this exact same thing two years ago, but unfortunately I fell victim to accidental closed source. When I rigged it the first time, I stupidly tried to get fancy and add USB interface with V-USB requiring special drivers and special software code to retrieve the data. The advantage was that the microcontroller spoke directly to the PC USB port via 2 pins requiring no extra hardware. The stinky part is that I’ve since lost the software I wrote necessary to decode the data. Reading my old post, I see I wrote “Although it’s hard for me, I really don’t think I can release this [microchip code] right now. I’m working on an idiot’s guide to USB connectivity with ATMEL microcontrollers, and it would cause quite a stir to post that code too early.”  Obviously I never got around to finishing it, and I’ve since lost the code. Crap! I have this fancy USB “enabled” frequency counter, but no ability to use it. NOTE TO SELF: NEVER POST PROJECTS ONLINE WITHOUT INCLUDING THE CODE! I guess I have to crack this open again and see if I can reprogram it…

My original intention was just to reprogram the IC and add serial USART support, then use a little FTDI adapter module to serve as a USB serial port. That will be supported by every OS on the planet out of the box.  Upon closer inspection, I realized I previously used an ATMega48 which has trouble being programmed by AVRDUDE, so I whipped up a new perf-board based around an ATMega8. I copied the wires exactly (which was stupid, because I didn’t have it written down which did what, and they were in random order), and started attacking the problem in software.

The way the microcontroller reads frequency is via the display itself. There are multiplexed digits, so some close watching should reveal the frequency. I noticed that there were fewer connections to the microcontroller than expected – a total of 12. How could that be possible? 8 seven-segment displays should be at least 7+8=15 wires. What the heck? I had to take apart the display to remind myself how it worked. It used a pair of ULN2006A darlington transistor arrays to do the multiplexing (as expected), but I also noticed it was using a CD4511BE BCD-to-7-segment driver to drive the digits. I guess that makes sense. That way 4 wires can drive 7 segments. 8+4=12 wires, which matches up. Now I feel stupid for not realizing it in the first place. Time to screw things back together.

Here’s the board I made. 3 wires go to the FTDI USB module (GND, VCC 5V drawn from USB, and RX data), black wires go to the display, and the headers are to aid programming. I added an 11.0592MHz crystal to allow maximum serial transfer speed (230,400 baud), but stupidly forgot to enable it in code. It’s all boxed up now, running at 8MHz and 38,400 baud with the internal RC clock. Oh well, no loss I guess.

I wasted literally all day on this. It was so stupid. The whole time I was kicking myself for not posting the code online. I couldn’t figure out which wires were for the digit selection, and which were for the BCD control. I had to tease it apart by putting random numbers on the screen (by sticking my finger in the frequency input hole) and looking at the data flowing out on the oscilloscope to figure out what was what. I wish I still had my DIY logic analyzer. I guess this project was what I built it for in the first place! A few hours of frustrating brute force programming and adult beverages later, I had all the lines figured out and was sending data to the computer.

With everything back together, I put the frequency counter back in my workstation and I’m ready to begin my frequency measurement experiments. Now it’s 9PM and I don’t have the energy to start a whole line of experiments. Gotta save it for another day. At least I got the counter working again!

Here’s the code that goes on the microcontroller (it sends the value on the screen as well as a crude checksum, which is just the sum of all the digits)

```#define F_CPU 8000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>

#define USART_BAUDRATE 38400
#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1)

void USART_Init(void){
UBRRL = BAUD_PRESCALE;
UBRRH = (BAUD_PRESCALE >> 8);
UCSRB = (1<<TXEN);
UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0); // 9N1
}

void USART_Transmit( unsigned char data ){
while ( !( UCSRA & (1<<UDRE)) );
UDR = data;
}

void sendNum(int byte){
if (byte==0){
USART_Transmit(48);
}
while (byte){
USART_Transmit(byte%10+48);
byte-=byte%10;
byte/=10;
}
}

void sendBin(int byte){
char i;
for (i=0;i<8;i++){
USART_Transmit(48+((byte>>i)&1));
}
}

volatile char digits[]={0,0,0,0,0,0,0,0};
volatile char freq=123;

char getDigit(){
char digit=0;
if (PINC&0b00000100) {digit+=1;}
if (PINC&0b00001000) {digit+=8;}
if (PINC&0b00010000) {digit+=4;}
if (PINC&0b00100000) {digit+=2;}
if (digit==15) {digit=0;} // blank
return digit;
}

void updateNumbers(){
while ((PINB&0b00000001)==0){} digits[7]=getDigit();
while ((PINB&0b00001000)==0){} digits[6]=getDigit();
while ((PINB&0b00010000)==0){} digits[5]=getDigit();
while ((PINB&0b00000010)==0){} digits[4]=getDigit();
while ((PINB&0b00000100)==0){} digits[3]=getDigit();
while ((PINB&0b00100000)==0){} digits[2]=getDigit();
while ((PINC&0b00000001)==0){} digits[1]=getDigit();
while ((PINC&0b00000010)==0){} digits[0]=getDigit();
}

int main(void){
USART_Init();
char checksum;
char i=0;
char digit=0;

for(;;){
updateNumbers();
checksum=0;
for (i=0;i<8;i++){
checksum+=digits[i];
sendNum(digits[i]);
}
USART_Transmit(',');
sendNum(checksum);
USART_Transmit('n');
_delay_ms(100);
}
}```

Here’s the Python code to listen to the serial port, though you could use any program (note that the checksum is just shown and not verified):

```import serial, time
import numpy
ser = serial.Serial("COM15", 38400, timeout=100)

t1=time.time()
lines=0

data=[]

Vi=5.0
R2=10000.0
R1=R2*(Vi-Vo)/Vo
return R1

while True:
print line```

This is super preliminary, but I’ve gone ahead and tested heating/cooling an oscillator (a microcontroller clocked with an external crystal and outputting its signal with CKOUT). By measuring temperature and frequency at the same time, I can start to plot their relationship…

Crystal Oven Testing

To maintain high frequency stability, RF oscillator circuits are sometimes “ovenized” where their temperature is raised slightly above ambient room temperature and held precisely at one temperature. Sometimes just the crystal is heated (with a “crystal oven”), and other times the entire oscillator circuit is heated. The advantage of heating the circuit is that other components (especially metal core instructors) are temperature sensitive. Googling for the phrase “crystal oven”, you’ll find no shortage of recommended circuits. Although a more complicated PID (proportional-integral-derivative) controller may seem enticing for these situations, the fact that the enclosure is so well insulated and drifts so little over vast periods of time suggests that it might not be the best application of a PID controller. One of my favorite write-ups is from M0AYF’s site which describes how to build a crystal oven for QRSS purposes. He demonstrates the MK1 and then the next design the MK2 crystal oven controller.  Here are his circuits:

Briefly, desired temperature is set with a potentiometer. An operational amplifier (op-amp) compares the target temperature with measured temperature (using a thermistor – a resistor which varies resistance by tempearture). If the measured temperature is below the target, the op-amp output goes high, and current flows through heating resistors. There are a few differences between the two circuits, but one of the things that struck me as different was the use of negative feedback with the operational amplifier. This means that rather than being on or off (like the air conditioning in your house), it can be on a little bit. I wondered if this would greatly affect frequency stability. In the original circuit, he mentions

The oven then cycles on and off roughly every thirty or forty seconds and hovers around 40 degrees-C thereafter to within better than one degree-C.

I wondered how much this on/off heater cycle affected temperature. Is it negligible, or could it affect frequency of an oscillator circuit? Indeed his application heats an entire enclosure so small variations get averaged-out by the large thermal mass. However in crystal oven designs where only the crystal is heated, such as described by Bill (W4HBK), I’ll bet the effect is much greater. Compare the thermal mass of these two concepts.

How does the amount of thermal mass relate to how well it can be controlled? How important is negative feedback for partial-on heater operation? Can simple ON/OFF heater regulation adequately stabalize a crystal or enclosure? I’d like to design my own heater, pulling the best elements from the rest I see on the internet. My goals are:

1. use inexpensive thermistors instead of linear temperature sensors (like LM335)
2. use inexpensive quarter-watt resistors as heaters instead of power resistors
3. be able to set temperature with a knob
4. be able to monitor temperature of the heater
5. be able to monitor power delivered to the heater
6. maximum long-term temperature stability

Right off the bat, I realized that this requires a PC interface. Even if it’s not used to adjust temperature (an ultimate goal), it will be used to log temperature and power for analysis. I won’t go into the details about how I did it, other than to say that I’m using an ATMEL ATMega8 AVR microcontroller and ten times I second I sample voltage on each of it’s six 10-bit ADC pins (PC0-PC5), and send that data to the computer with USART using an eBay special serial/USB adapter based on FTDI. They’re <\$7 (shipped) and come with the USB cable. Obviously in a consumer application I’d etch boards and use the SMT-only FTDI chips, but for messing around at home I a few a few of these little adapters. They’re convenient as heck because I can just add a heater to my prototype boards and it even supplies power and ground. Convenient, right? Power is messier than it could be because it’s being supplied by the PC, but for now it gets the job done. On the software side, Python with PySerial listens to the serial port and copies data to a large numpy array, saving it every once and a while. Occasionally a bit is sent wrong and a number is received incorrectly (maybe one an hour), but the error is recognized and eliminated by the checksum (just the sum of all transmitted numbers). Plotting is done with numpy and matpltolib. Code for all of that is at the bottom of this post.

That’s the data logger circuit I came up with. Reading six channels ten times a second, it’s more than sufficient for voltage measurement. I went ahead and added an op-amp to the board too, since I knew I’d be using one. I dedicated one of the channels to serve as ambient temperature measurement. See the little red thermistor by the blue resistor? I also dedicated another channel to the output of the op-amp. This way I can measure drive to whatever temperature controller circuity I choose to use down the road. For my first test, I’m using a small thermal mass like one would in a crystal oven. Here’s how I made that:

I then build the temperature controller part of the circuit. It’s pretty similar to that previously published. it uses a thermistor in a voltage divider configuration to sense temperature. It uses a trimmer potentiometer to set temperature. An LED indicator light gives some indication of on/off, but keep in mind that a fraction of a volt will turn the Darlington transistor (TIP122) on slightly although it doesn’t reach a level high enough to drive the LED. The amplifier by default is set to high gain (55x), but can be greatly lowered (negative gain actually) with a jumper. This lets me test how important gain is for the circuitry.

When using a crystal oven configuration, I concluded high high gain (cycling the heater on/off) is a BAD idea. While average temperature is held around the same, the crystal oscillates. This is what is occurring above when M0AYF indicates his MK1 heater turns on and off every 40 seconds. While you might be able to get away with it while heating a chassis or something, I think it’s easy to see it’s not a good option for crystal heaters. Instead, look at the low gain (negative gain) configuration. It reaches temperature surprisingly quickly and locks to it steadily. Excellent.

Clearly low (or negative) gain is best for crystal heaters. What about chassis / enclosure heaters? Let’s give that a shot. I made an enclosure heater with the same 2 resistors. Again, I’m staying away from expensive components, and that includes power resistors. I used epoxy (gorilla glue) to cement them to the wall of one side of the enclosure.

I put a “heater sensor” thermistor near the resistors on the case so I could get an idea of the heat of the resistors, and a “case sensor” on the opposite side of the case. This will let me know how long it takes the case to reach temperature, and let me compare differences between using near vs. far sensors (with respect to the heating element) to control temperature. I ran the same experiments and this is what I came up with!

Right off the bat, we observe that even with the increased thermal mass of the entire enclosure (being heated with two dinky 100 ohm 1/4 watt resistors) the system is prone to temperature oscillation if gain is set too high. For me, this is the final nail in the coffin – I will never use a comparator-type high gain sensor/regulation loop to control heater current. With that out, the only thing to compare is which is better: placing the sensor near the heating element, or far from it. In reality, with a well-insulated device like I seem to have, it seems like it doesn’t make much of a difference! The idea is that by placing it near the heater, it can stabilize quickly. However, placing it far from the heater will give it maximum sensation of “load” temperature. Anywhere in-between should be fine. As long as it’s somewhat thermally coupled to the enclosure, enclosure temperature will pull it slightly away from heater temperature regardless of location. Therefore, I conclude it’s not that critical where the sensor is placed, as long as it has good contact with the enclosure. Perhaps with long-term study (on the order of hours to days) slow oscillations may emerge, but I’ll have to build it in a more permanent configuration to test it out. Lucky, that’s exactly what I plan to do, so check back a few days from now!

Since the data speaks for itself, I’ll be concise with my conclusions:

• two 1/4 watt 100 Ohm resistors in parallel (50 ohms) are suitable to heat an insulated enclosure with 12V
• two 1/4 watt 100 Ohm resistors in parallel (50 ohms) are suitable to heat a crystal with 5V
• low gain or negative gain is preferred to prevent oscillating tempeartures
• Sensor location on an enclosure is not critical as long as it’s well-coupled to the enclosure and the entire enclosure is well-insulated.

I feel satisfied with today’s work. Next step is to build this device on a larger scale and fix it in a more permanent configuration, then leave it to run for a few weeks and see how it does. On to making the oscillator! If you have any questions or comments, feel free to email me. If you recreate this project, email me! I’d love to hear about it.

Here’s the code that went on the ATMega8 AVR (it continuously transmits voltage measurements on 6 channels).

```#define F_CPU 8000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>

/*
8MHZ: 300,600,1200,2400,4800,9600,14400,19200,38400
1MHZ: 300,600,1200,2400,4800
*/
#define USART_BAUDRATE 38400
#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1)

/*
{
PORTD^=255;
}
*/

void USART_Init(void){
UBRRL = BAUD_PRESCALE;
UBRRH = (BAUD_PRESCALE >> 8);
UCSRB = (1<<TXEN);
UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0); // 9N1
}

void USART_Transmit( unsigned char data ){
while ( !( UCSRA & (1<<UDRE)) );
UDR = data;
}

void sendNum(long unsigned int byte){
if (byte==0){
USART_Transmit(48);
}
while (byte){
USART_Transmit(byte%10+48);
byte-=byte%10;
byte/=10;
}
}

}

int val;
sendNum(val);
USART_Transmit(',');
return val;
}

int main(void){
DDRB=255;
USART_Init();
int checksum;

for(;;){
PORTB=255;
checksum=0;
sendNum(checksum);
USART_Transmit('n');
PORTB=0;
_delay_ms(200);
}
}```

Here’s the command I used to compile the code, set the AVR fuse bits, and load it to the AVR.

```del *.elf
del *.hex
avr-gcc -mmcu=atmega8 -Wall -Os -o main.elf main.c -w
pause
cls
avr-objcopy -j .text -j .data -O ihex main.elf main.hex
avrdude -c usbtiny -p m8 -F -U flash:w:"main.hex":a -U lfuse:w:0xe4:m -U hfuse:w:0xd9:m```

Here’s the code that runs on the PC to listen to the microchip, match the data to the checksum, and log it occasionally.

```import serial, time
import numpy
ser = serial.Serial("COM16", 38400, timeout=100)

t1=time.time()
lines=0

data=[]

Vi=5.0
R2=10000.0
R1=R2*(Vi-Vo)/Vo
return R1

while True:
lines+=1
if "," in line:
line=line.split(",")
for i in range(len(line)):
line[i]=int(line[i][::-1])

if line[-1]==sum(line[:-1]):
line=[time.time()]+line[:-1]
print lines, line
data.append(line)
else:
print  lines, line, "<-- FAIL"

if lines%50==49:
numpy.save("data.npy",data)
print "nSAVINGn%d lines in %.02f sec (%.02f vals/sec)n"%(lines,
time.time()-t1,lines/(time.time()-t1))```

Here’s the code that runs on the PC to graph data.

```import matplotlib
matplotlib.use('TkAgg') # <-- THIS MAKES IT FAST!
import numpy
import pylab
import datetime
import time

K=Vo*100
C=K-273
F=C*(9.0/5)+32
return F

Vi=5.0
R2=10000.0
R1=R2*(Vi-Vo)/Vo
return R1

return Vo

if True:
data=data

fig=pylab.figure()
xs=data[:,0]
tempAmbient=data[:,1]
tempPower=data[:,2]
tempHeater=data[:,3]
tempCase=data[:,4]
dates=(xs-xs[0])/60.0
#dates=[]
#for dt in xs: dates.append(datetime.datetime.fromtimestamp(dt))

ax1=pylab.subplot(211)
pylab.title("Temperature Controller - Low Gain")
pylab.plot(dates,tempHeater,'b-')
pylab.plot(dates,tempCase,'g-')
#pylab.axhline(115.5,color="k",ls=":")

#ax2=pylab.subplot(312,sharex=ax1)
#pylab.plot(dates,tempCase,'r-')
#pylab.plot(dates,tempAmbient,'g-')
#pylab.axhline(0,color="k",ls=":")

ax2=pylab.subplot(212,sharex=ax1)
pylab.ylabel('Heater Power')
pylab.plot(dates,tempPower)

#fig.autofmt_xdate()
pylab.xlabel('Elapsed Time (min)')

pylab.show()

print "DONE"```

Precision Temperature Measurement

In an effort to resume previous work [A, B, C, D] on developing a crystal oven for radio frequency transmitter / receiver stabilization purposes, the first step for me was to create a device to accurately measure and log temperature. I did this with common, cheap components, and the output is saved to the computer (over 1,000 readings a second). Briefly, I use a LM335 precision temperature sensor (\$0.70 on mouser) which outputs voltage with respect to temperature. It acts like a Zener diode where the breakdown voltage relates to temperature. 2.95V is 295K (Kelvin), which is 22ºC / 71ºF. Note that Kelvin is just ºC + 273.15 (the difference between freezing and absolute zero). My goal was to use the ADC of a microcontroller to measure the output. The problem is that my ADC (one of 6 built into the ATMEL ATMega8 microcontroller) has 10-bit resolution, reporting steps from 0-5V as values from 0-1024. Thus, each step represents 0.0049V (0.49ºC / 0.882ºF). While ~1ºF resolution might be acceptable for some temperature measurement or control applications, I want to see fractions of a degree because radio frequency crystal temperature stabilization is critical. Here’s a video overview.

This is the circuit came up with. My goal was to make it cheaply and what I had on hand. It could certainly be better (more stable, more precise, etc.) but this seems to be working nicely. The idea is that you set the gain (the ratio of R2/R1) to increase your desired resolution (so your 5V of ADC recording spans over just several ºF you’re interested in), then set your “base offset” temperature that will produce 0V. In my design, I adjusted so 0V was room temperature, and 5V (maximum) was body temperature. This way when I touched the sensor, I’d watch temperature rise and fall when I let go.  Component values are very non-critical. LM324 is powered 0V GND and +5V Vcc. I chose to keep things simple and use a single rail power supply. It is worth noting that I ended-up using a 3.5V Zener diode for the positive end of the potentiometer rather than 5V.  If your power supply is well regulated 5V will be no problem, but as I was powering this with USB I decided to go for some extra stability by using a Zener reference.

On the microcontroller side, analog-to-digital measurement is summed-up pretty well in the datasheet. There is a lot of good documentation on the internet about how to get reliable, stable measurements. Decoupling capacitors, reference voltages, etc etc. That’s outside the scope of today’s topic. In my case, the output of the ADC went into the ATMega8 ADC5 (PC5, pin 28). Decoupling capacitors were placed at ARef and AVcc, according to the datasheet. Microcontroller code is at the bottom of this post.

To get the values to the computer, I used the USART capability of my microcontroller and sent ADC readings (at a rate over 1,000 a second) over a USB adapter based on an FTDI FT232 chip. I got e-bay knock-off FTDI evaluation boards which come with a USB cable too (they’re about \$6, free shipping). Yeah, I could have done it cheaper, but this works effortlessly. I don’t use a crystal. I set fuse settings so the MCU runs at 8MHz, and thanks to the nifty online baud rate calculator determined I can use a variety of transfer speeds (up to 38400). At 1MHz (if DIV8 fuse bit is enabled) I’m limited to 4800 baud. Here’s the result, it’s me touching the sensor with my finger (heating it), then letting go.

I spent a while considering fancy ways to send the data (checksums, frame headers, error correction, etc.) but ended-up just sending it old fashioned ASCII characters. I used to care more about speed, but even sending ASCII it can send over a thousand ADC readings a second, which is plenty for me. I ended-up throttling down the output to 10/second because it was just too much to log comfortable for long recordings (like 24 hours). In retrospect, it would have made sense to catch all those numbers and do averaging on the on the PC side.

On the receive side, I have nifty Python with PySerial ready to catch data coming from the microcontroller. It’s decoded, turned to values, and every 1000 receives saves a numpy array as a NPY binary file. I run the project out of my google drive folder, so while I’m at work I can run the plotting program and it loads the NPY file and shows it – today it allowed me to realize that my roomate turned off the air conditioning after I left, because I saw the temperature rising mid-day. The above graph is temperature in my house for the last ~24 hours. That’s about it! Here’s some of the technical stuff.

AVR ATMega8 microcontroller code:

```#define F_CPU 8000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>

/*
8MHZ: 300,600,1200,2400,4800,9600,14400,19200,38400
1MHZ: 300,600,1200,2400,4800
*/
#define USART_BAUDRATE 38400
#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1)

/*
{
PORTD^=255;
}
*/

void USART_Init(void){
UBRRL = BAUD_PRESCALE;
UBRRH = (BAUD_PRESCALE >> 8);
UCSRB = (1<<TXEN);
UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0); // 9N1
}

void USART_Transmit( unsigned char data ){
while ( !( UCSRA & (1<<UDRE)) );
UDR = data;
}

void sendNum(long unsigned int byte){
if (byte==0){
USART_Transmit(48);
}
while (byte){
USART_Transmit(byte%10+48);
byte-=byte%10;
byte/=10;
}

}

}

}

int main(void){
//DDRD=255;
USART_Init();
for(;;){
USART_Transmit('n');
_delay_ms(100);
}
}```

Here is the Python code to receive the data and log it to disk:

```import serial, time
import numpy
ser = serial.Serial("COM15", 38400, timeout=100)

t1=time.time()
lines=0

data=[]

while True:

if "," in line:
line=line.split(",")
for i in range(len(line)):
line[i]=line[i][::-1]
else:
line=[line[::-1]]
temp=int(line[0])
lines+=1
data.append(temp)
print "#",
if lines%1000==999:
numpy.save("DATA.npy",data)
print
print line
print "%d lines in %.02f sec (%.02f vals/sec)"%(lines,
time.time()-t1,lines/(time.time()-t1))```

Here is the Python code to plot the data that has been saved:

```import numpy
import pylab

print data
data=data*.008 #convert to F
xs=numpy.arange(len(data))/9.95  #vals/sec
xs=xs/60.0# minutes
xs=xs/60.0# hours

pylab.plot(xs,data)
pylab.grid(alpha=.5)
pylab.axis([None,None,0*.008,1024*.008])
pylab.ylabel(r'\$Delta\$ Fahrenheit')
pylab.xlabel("hours")
pylab.show()```

If you recreate this project, or have any questions, feel free to email me!

Realtime image pixelmap from Numpy array data in Qt

WARNING: this project is largely outdated, and some of the modules are no longer supported by modern distributions of Python.

For a more modern, cleaner, and more complete GUI-based viewer of realtime audio data (and the FFT frequency data), check out my Python Real-time Audio Frequency Monitor project.

Consider realtime spectrograph software like QRSS VD.  It’s primary function is to scroll a potentially huge data-rich image across the screen. In Python, this is often easier said than done. If you’re not careful, you can tackle this problem inefficiently and get terrible frame rates (<5FPS) or eat a huge amount of system resources (I get complaints often that QRSS VD takes up a lot of processor resources, and 99% of it is drawing the images).  In the past, I’ve done it at least 4 different ways (one, two, three, four, five). Note that “four” seems to be the absolute fastest option so far. I’ve been keeping an eye out for a while now contemplating the best way to rapidly draw color-mapped 8-bit data in a python program. Now that I’m doing a majority of my graphical development with PyQt and QtDesigner (packaged with PythonXY), I ended-up with a solution that looks like this (plotting random data with a colormap):

Here are the main points of how it’s done, with itallicised lines looped to refresh the data.

1.) in QtDesigner, create a form with a scrollAreaWidget

2.) in QtDesigner, add a label inside the scrollAreaWidget

3.) in code, resize label and also scrollAreaWidgetContents to fit data (disable “widgetResizable”)

4.) in code, create a QImage from a 2D numpy array (dtype=uint8)

5.) in code, set label pixmap to QtGui.QPixmap.fromImage(QImage)

That’s pretty much it! Here are some highlights of my program. Note that the code for the GUI is in a separate file, and must be downloaded from the ZIP provided at the bottom. Hope it helps someone else out there who might want to do something similar!

```import ui_main
import sys
from PyQt4 import QtCore, QtGui

import sys
from PyQt4 import Qt
import PyQt4.Qwt5 as Qwt
from PIL import Image
import numpy
import time

spectroWidth=1000
spectroHeight=1000

a=numpy.random.random(spectroHeight*spectroWidth)*255
a=numpy.reshape(a,(spectroHeight,spectroWidth))
a=numpy.require(a, numpy.uint8, 'C')

COLORTABLE=[]
for i in range(256): COLORTABLE.append(QtGui.qRgb(i/4,i,i/2))

def updateData():
global a
a=numpy.roll(a,-5)
QI=QtGui.QImage(a.data, spectroWidth, spectroHeight, QtGui.QImage.Format_Indexed8)
QI.setColorTable(COLORTABLE)
uimain.label.setPixmap(QtGui.QPixmap.fromImage(QI))

if __name__ == "__main__":
app = QtGui.QApplication(sys.argv)
win_main = ui_main.QtGui.QWidget()
uimain = ui_main.Ui_win_main()
uimain.setupUi(win_main)

# SET UP IMAGE
uimain.IM = QtGui.QImage(spectroWidth, spectroHeight, QtGui.QImage.Format_Indexed8)
uimain.label.setGeometry(QtCore.QRect(0,0,spectroWidth,spectroHeight))
uimain.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0,0,spectroWidth,spectroHeight))

# SET UP RECURRING EVENTS
uimain.timer = QtCore.QTimer()
uimain.timer.start(.1)
win_main.connect(uimain.timer, QtCore.SIGNAL('timeout()'), updateData)

### DISPLAY WINDOWS
win_main.show()
sys.exit(app.exec_())```