Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

Man, what a long day! Work is so tedious sometimes. This week I’ve been proofing scientific literature using Office 2003 with “track changes”. I make changes, my boss makes changes, I make more changes, and it goes back and forth a few times. I wonder why office 2007 is so bad. Does anybody truly like it, and find it to be a significant improvement upon 2003? … or Vista over XP? Maybe I’m just getting old, inflexible, and grumpy.

This is what I’m currently working on. The light bubbles on the right are deletions. The dark bubbles on the right are comments. The red text is insertions/modifications I made. Pretty intense, right? Pages and pages of this. I’m starting to grasp the daunting amount of time a scientist must spend writing in the laboratory as opposed to performing actual experiments or even doing literature research.

Last night I assembled a Pixie II circuit similar to the one pictured here. I must say that I’m a little disappointed with the information available on the internet regarding simple RF theory in relation to transceiver circuits. I’m just now starting to get into RF circuitry and the concept looking at circuits and imagining a combination of AC and DC flowing through it is warping my brain. I have everything I need to build a simple Pixie II transceiver (which is supposedly capable of Morse code transmissions over 300 miles, and QRSS applications over 3,000 miles) but I don’t want to use it unless I understand how it actually works.

I’m trying to break this circuit down into its primary components. I understand the role of the lowpass filter. I understand the role of the 1st transistor and related circuitry in amplifying the output of the crystal oscillator (left side). I totally get the audio amplifier circuitry (bottom). It’s that center transistor (which supposedly handles signal amplification, receiving, and mixing) that I can’t get my mind around. Every time I think figure it out for one mode (sending or receiving), I mentally lose the other one. It has me very frustrated because it seems like this should be easier than I’m making it. I selected this circuit because it was simple and I assumed I’d be smart enough to figure it out… maybe I was wrong? I wish I had an oscilloscope so I could probe the RF passing through various stages of this circuit. I guess I should take another stab at reading chapters 5-11 of the ARRL handbook.

Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

I put the transmitter from the previous post to the test. I changed the circuitry a bit though. I kept the oscillator (50 MHz) is now continuously powered. I programmed the ATTiny 2313 microcontroller (using PWM output) to send an oscillating signal to the base of a transistor (NPN). In this way the microcontroller PWM output didn’t supply power to the oscillator, but rather grounded it. I got a big boost in range this way. Yesterday I couldn’t even hear the signal in the parking lot of my apartment, whereas today I heard it loud and clear. I decided to take a drive with my scanner, laptop, and Argo to see how far away I could get and still detect the signal. With this bare bones transmitter setup (using a 2M J-pole antenna) I was able to detect it over 4,000 ft away. The receiving antenna was a 2m ~1ft high antenna magnet-mounted on top of my car.

This is the signal captured by Argo running on my laptop in my car as I drove away

In retrospect, I should have run Argo at my apartment and drove the transmitter farther and farther away. I presume that my transmitter is functioning decently, and that if I attached it to a proper antenna (and had a better receiving antenna) I might be able to get some cross-town distance? I’m still learning – this is the point though, right?

This is where I was when the signal died. The red marker (upper right) is my apartment where the transmitter was, and the signal began to die right as I traveled south on Chickasaw past Lake Underhill (~4000 ft away). This immediate loss may be due to the fact that I passed under power lines which parallel Lake Underhill which interrupted the line-of-sight path between my 3rd story apartment balcony and me. If this were the case, supposedly if I kept driving south the signal may have improved.

Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

I’ve been very busy over the past couple weeks. Last Thursday my boss approached me and asked if I could work over the weekend. He wanted to complete and submit a grant by the deadline (Monday at 5 pm). To make a long story short I worked really hard (really long days) on Friday, Saturday, Sunday, and Monday to accomplish this. Monday afternoon when it was done (at about 4 pm), after which I went home and collapsed from exhaustion. I don’t know how my boss does it! He worked on it far more than I did, and over that weekend he didn’t sleep much. Anyway, in exchange for my over-weekend work I got Tuesday and Wednesday off.

I knew in advance that I’d have two days off to do whatever I wanted. I prepared ahead of time by ordering a small handful (I think 4?) of ATMEL AVR type ATTiny2313 chips from Digi-Key at $2.26 per chip. They arrived in the mail on Monday. Unlike the simple PICAXE chips which can be programmed a form of BASIC cod from 2 wires of a serial port, the AVR series of chips are usually programmed from assembly-level code. Thankfully, C code can be converted to assembly (thanks to AVR-GCC) and loaded onto these chips. The result is a much faster and more powerful coding platform than the PICAXE chips can delivery. PICAXE seems useful for rapid development (especially if you already know BASIC) but I feel that I’m ready to tackle something new.

I built a straight-through parallel programmer for my ATTiny2313 chips. It was based upon the dapa configuration and connects to the appropriate pins. To be safe I recommend that you protect your parallel port and microcontrollers by installing the proper resisters (~1k?) between the devices, but I didn’t do this.

I decided to dive right in to the world of digital RF transmission and should probably go to jail for it. I blatantly violated FCC regulations and simply wired my microcontroller to change the power level given to a 3.579545 MHz oscillator. The antenna is the copper wire sticking vertically out of the breadboard.

These crystals release wide bands of RF not only near the primary frequency (F), but also on the harmonic frequencies (F*n where n=1,2,3…). I was able to pick up the signal on my scanner at its 9th harmonic (32.215905 MHz). I think the harmonic output power is inversely proportional to n. Therefore the frequency I’m listening to represents only a fraction of the RF power the crystal is putting out at its primary frequency. Unfortunately the only listening device I have (currently) is the old scanner, which can only listen above 30 MHz.

Remember when I talked about the illegal part? Yeah, I detected harmonic signals being emitted way up into the high 100s of MHz. I don’t think it’s a big deal because it’s low power and I doubt the signal is getting very far, but I’m always concerned about irritating people (Are people trying to use Morse code at one of the frequencies? Am I jamming my neighbors’ TV reception?) so I don’t keep it on long. Once I get some more time, I’ll build the appropriate receiver circuits (I have another matched crystal) and install a low-pass filter (to eliminate harmonics) and maybe even get a more appropriate radio license (I’m still only technician). But for now, this is a proof-of-concept, and it works. Check out the output of the scanner.

Something I struggled with for half an hour was how to produce a tone with a microcontroller and the oscillator. Simply supplying power to the oscillator produces a strong RF signal, but there is no sound to it. It’s just full quieting when it’s on, and static noise when it’s off. To produce an AM tone, I needed amplitude modulation. I activated the oscillator by supplying power from the microcontroller with one pin (to get it oscillating), and fed it extra juice in the form of timer output from another pin. The fluctuation in power to the oscillator (without power-loss) produced a very strong, loud, clear signal (horizontal lines). I wrote code to make it beep. Frequency can be adjusted by modifying the timer output properties. The code in the screenshot is very primitive, and not current (doesn’t use timers to control AM frequency), but it worked. I’m sure I’ll write more about it later.

Thoughts from Future Scott (August 2019, 10 years later):

What a good start! But what a bad design =P

Driving a can oscillator’s power pin with two microcontroller pins is not a good idea. Also, you were SO CLOSE to getting frequency shift keying to work! Rather than turning the can oscillator on/off with the microcontroller, just leave it on continuously and send a microcontroller pin to the can oscillator’s VCO pin. I’m sure I didn’t know what that 4th pin does when did when I originally wrote this (and most diagrams of can oscillators online leave that pin disconnected).

Either way, I’m happy this day happened – this was the start of years of hobby radio frequency circuit design!

Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

Over the last couple weeks whenever I had the time I’d work on creating a little Morse code keyer. After a few different designs I came up with the winner. Basically it just uses a bar of aluminum which rocks on a metal pin. Thumb-screws on each side of the balance point (fulcrum?) can be adjusted to modulate the distance the paddle has to go down to be activated, and how high the paddle goes up when released. A couple springs (one pull-type and one push-type) help give it a good bounce between keys. Two knobs control volume and frequency. I especially like the ability to control the frequency! A capacitor inline with the speaker helps smooth the output a bit too. It’s not professional, but hey – for a couple bucks of parts I made a functional keyer and had fun doing it. Now I guess I should put more time into learning Morse code…

Thoughts from future Scott (August 2019, ten years later)

Wow this is rough! I’m 90% sure this is based on a 555 circuit. lol @ the use of Jenga blocks. It looks like the wire was sourced from cat5 cable. That aluminum slab later became the base and heat sink for an IRF510-based push-pull amplifier.

Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

I got an idea today for an odd but interesting project. The idea is still in the earliest stages of development, and I further research the idea (for example, I don’t even know if it’s legal) but it’s a cool idea and I want to try it. I know I’ll learn a lot from the project, and that’s what’s important, right? So, here’s the idea: I want to build an incredibly simple, low power radio transmitter that broadcasts data on a fixed frequency. Data is provided by a microcontroller. What data will it transmit? uh… err… um… okay it doesn’t really matter and I don’t even know, I just want to do this project! Maybe temperature and light intensity or something. Who cares – it’d be fun to make regardless of what it transmits. I could put it all into a drybox (pictured).

Once properly closed, this box will keep everything in pristine working condition by protecting against rain, heat, snow (not that we get much of that in Orlando), hurricanes, and perhaps even Florida panthers and bears (oh my). I’d like to make a glass (or plexiglas) window on the top so that light could get in, hitting solar panels, which trickle-charges the battery housed in the device as well.

My idea is to keep construction costs to a minimum because I’m throwing this away as soon as I make it. My goal is to make it work so I can toss it in some random location and see how long it will run. Days? Weeks? Months? Years? How cool would it be to go to dental school, come back ~5 years from now, and have that transmitter still transmitting data. I’ve been poking around and I found someone who did something similar. They built a 40mW 10m picaxe-powered beacon using a canned oscillator as the transmit element.

I understand the basics of radio, amplitude and frequency modulation (AM and FM), etc., but I’ve never actually built anything that transmits radio waves. I could build a SoftRock radio, but my educational grounding is in molecular biology. I know little about circuit-level electronics, electrical engineering, and radio theory… so my plan is to start small. This project is small enough to attack and understand, with a fun enough end result to motivate me throughout the process.

Warning: This post is several years old and the author has marked it as poor quality (compared to more recent posts). It has been left intact for historical reasons, but but its content (and code) may be inaccurate or poorly written.

Two hours after getting home from work I’m already basking in the newfound carefreeness thanks to the successful completion of my thesis defense (and graduation requirements). Yesterday I went to SkyCraft, early this morning I posted a schematic diagram of a basic circuit concept for a radio/microphone interface box with tone generating functions, and this afternoon I finished its assembly. It’s hacked together, I know, but it’s just a prototype. What does it do? It’s complicated. It’s basically just an exercise in microchip programming.

Future Scott reacts to this in August, 2019 (10 years later)

LOL! That’s a pipette box! A chip socket was sunk into a plastic enclosure somehow! And that “regulated power supply” is an LM7805 on non-metallic perfboard screwed to two Jenga blocks!

Here’s the little setup with the main control unit and a DC to DC regulated power supply / serial microchip programmer I made.

Here’s the main control box. Notice the “2-way lighted switches” which I described in the previous entry. I found that proper grounding (floating pin prevention) was critical to their proper function. I’m still new to these chips, so I’m learning, but I’m making progress!

Getting a little artsy with my photographs now… this is the core of the device. It’s a picaxe 14m!

This is a 5v regulated power supply I built. The headphone adapter is for easy connection to the serial port. It has a power switch and a program/run switch (allowing use of pin 13, serial out) while still “connected” to the PC.

I’ve slightly improved the connection between my radio’s coax cable to the J-pole antenna I made.

I’m able to get pretty good from this antenna, but it’s probably not likely to do much to my assembly skills (and lack of tuning), and more likely due to the fact that I have an unobstructed view of middle/southern Orlando from the 3rd story of my apartment balcony. I could probably wire up a rubber duck on a stick and get good results with that location! I’ll miss my reception when I move.

I’m posting this information hoping that someone else in a position similar to mine can benefit from the experience I gained through trial and error while trying to rapidly design and develop professional-looking QSL cards at low risk. I Googled around for this information, but didn’t find anything too helpful, so I figured I’d come up with something on my own and share my story.

QSL cards are like postcards which amateur radio operators often mail to one another after making long distance contacts. In addition to providing tangible proof of the communication, they’re cool mementos to tote around to remember who you’ve made contact with over the years. QSL cards display information bout the contact (time, date, call sign, frequency, signal report, etc.) and sometimes contain extra pictures/graphics which make them unique and appealing.

Once I got a HF rig for my apartment (a Century 21 CW-only HF rig which puts out ~30 watts), I started making contacts and getting QSL cards myself, so I wanted to send some nice ones in return. Being a poor college student (and a graduate student at that), I was extremely cash-limited, and didn’t want to sit around for weeks while my cards were professionally printed. This post describes how I created nice looking QSL cards in a few hours, for less than $0.25 each!

Step 1: Design the cards with the correct dimensions. The most cost-effective way to print nice digital images is my local Target (a store with a 1-hr photo lab which accepts JPEGs as the image source for $0.20 cents a picture), but the snag was that they only print 4” x 6”. QSL cards need to be 3.5” by 5.25”. I used Inkscape to create an image exactly 4” by 6”, and inside of it I drew a border 3.5” by 5.25”. Everything outside that border I made black. I designed my QSL card inside that border, such that when the images would be printed I could trim-off the black border and have a perfect 3.5” by 5.25” QSL card.

Step 2: Print the reverse side on full-size label paper. All I needed was some framed boxes for QSL information, so I quickly sketched up the design in Inkscape and saved it in the same format as before (4” by 6”). I left a LOT of white space around the edges so it’s very forgiving down the line. I then printed the design on full-page label paper (full-sheet stickers, available at most office stores cheaply in the printer paper section), placing 4 “backs” per page.


Here’s what the adhesive paper looked like after printing:


Step 3: Attach backings to QSL cards. This part is easy if you have a paper cutter. I purchased mine ~5yrs ago and I *LOVE* it. It’s almost as useful as my soldering iron. Seriously, so convenient. I wouldn’t dream of doing this with scissors! Anyhow, roughly cut the sticker paper into quarters.


Next, peel and stick on the backs of cards. Don’t worry about overhang, we’ll take care of that later…


Step 4: Trim the edges. Make sure you do this step after applying the sticker. This was the secret that I wish I realized a while ago. If you trim first, sticker placement is critical and difficult. If you place the sticker before you trim, you get perfect edges every time.


How nice does that look? If you did your math correctly, your new dimensions should be exactly 3.5” by 5.25”.


Step 5: fill-out information. I decided to use a metallic Sharpie to write the name of the call sign I send this to on the front of my card. How cool does that look? This is what the front/back of this card looks like after filling it out.


I hope this information helps you. If you print your own QSL cards using this (or a similar) method, let me know about it! I have to say, for ~5 / $1, these don’t look to bad. It’s especially useful if you only want to print a few cards! Good luck.
— Scott, AJ4VD